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Dielectric Slab-Loaded Resonant Cavity for
Applications Requiring Enhanced Field Uniformity

J. T. Bernhard and W. T. Joines

Abstract—This lpaper introduces and analyzes a rectangular resonant
structure that provides an alternative to the multimode resonant cavity
in applications requiring enhanced field uniformity. The resonant cavity
contains four dielectric loadlng slabs placed along the cavity walls. Its first
resonant mode is related to the uniform field distribution supported in a
rectongtdar TEM ‘wavegnide. The electromagnetic fields within the cavity
are described using a closed-form approach, with approximations taken
to account for the presence of two of the loading slabs. Application of the
boundary conditions leads to mr eigenvahre formulation, which is used
to determine resonant frequencies and electromagnetic field distributions
withhr the cavity. Measurements of both resonant frequencies and electric
field magnitudes confirm the analysis. This work provides the basis
for futnre analyses and implementation of slab-loaded cavities in both
scientific and industrial settings.

I. INTRODUCTION

In recent years, interest in using microwave signals for applications
in many nontraditional settings and disciplines has grown dramati-

cally. Some of these applications include using microwave power for
heat treating, polymer and ceramic curing, and plasma processing
[1], [2], as well as to accelerate and influence the course of chemical
reactions and to investigate the effects of microwaves on biological
tissues [3], [4]. These applications require electromagnetic exposure
chambers with relatively uniform power dkitributions, Uniform power
distributions within the chambers help to prevent “hot” or “cold”
spots which may cause unnecessary destruction or waste of sample
material.

Several researchers [1], [2] have concentrated their efforts toward
the design and analysis of multimode resonant cavities to achieve
more uniform exposure of samples to microwave fields. These
multimode cavities possess fairly uniform power distributions in
their central regions. However, a sample placed with its edges near
the conducting walls of a cavity experiences steep field gradients,
resulting in large discrepancies in exposure across the entire sample.
This effectively reduces the usable volume of the exposure chamber,
wasting both space and energy. Additionally, the use of large band-
width swept frequency generators makes the apparatus expensive and
inefficient, since power at some frequencies will be reflected back to
the source.

This paper introduces and analyzes a rectangular resonant structure
which provides an alternative to the multimode resonant cavity in
applications that require enhanced field uniformity. The resonant

cavity contains four dielectric loading slabs parallel and adjacent to
the side walls of the cavity. Its first resonant mode is related to the
uniform field distribution supported in a rectangular TEM waveguide,
The electromagnetic fields within the cavity are described using a
closed-form approach, with approximations taken to account for the
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Fig. 1. Inside configuration of the slab-loaded resonant cavity. All dielectric
loading slabs have thickness t and height b, The rectangulm cavity has
dimensions of width a, height b, and length d. Dielectric slabs 1 and 2 are
oriented along the f direction. Dielectric sIabs 3 and 4 are oriented along the
2 dkection.

presence of two of the loading slabs. Application of the boundary
conditions leads to an eigenvah,re formulation, which is used to

determine resonant frequencies and electromagnetic field distributions
within the cavity. Measurements of both resonant frequencies and

electric field magnitudes confirm the analysis. This work provides the
basis for future analyses and implementation of slab-loaded cavities
in both scientific and industrial settings.

II. STRUCTURE

The cavity’s structure consists of a rectangular cavity lined on four
of the six conducting walls with dielectric loading slabs, as shown
in Fig. 1. The cavity has inner dimensions of width a, height b, and
length d. The dielectric slabs each have thickness t, height b, and

relative permittivity cl. Two slabs with length d – 2t (designated
as 1 and 2 in Fig. 1) are oriented parallel to the 2 axis, and the
remaining two with length a (designated as 3 and 4 in Fig, 1) are
oriented parallel to the ~ axis. In this analysis, the inner volume is
assumed to be tilled with air (CZ s 1).

III. THEORY

Empty rectangtrlm cavities have resonant modes based on TE and
TM modes of empty rectangular waveguides. On the other hand, the
slab-loaded cavity described in the previous section supports modes

based on the longitudinal-section electric (LSE) and longitudinal-
section magnetic (LSM) modes of wavegtrides loaded with two
dielectric slabs. The LSE modes have a magnetic field component
normal to the dielectric interfaces, The LSM modes have an electric
field component normal to the dielectric interfaces [5].

The LSE and LSM modes of a rectangular waveguide loaded with
dielectric slabs along 5, with Iossless propagation in the t direction,
are derived from the magnetic and electric Hertzian potentials,
respectively, fik = .itjk(x, y)e–~k” and ~, = i+, (.r. y)e–Jk”’.

For the case of a resonant cavity of length d containing just two
diel~ctric slab: along the S direction, the exponential s dependence
of II k and IIc is changed to a sinusoidal form, determined by
t~e geometry of the structure and boundary conditions. Therefore,
II. = ?@/, (z, y, z) and fle = t~,(r, y, z). For such potentials
satisfying the Lorentz condition, the electric and magnetic fields for
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the LSE modes and LSM modes, respectively, are [5]

Both of the Hertzian

with k equal to the

ZLSE = –jwpv X fih (1)

tiLSE=Vx Vxtih (2)

ELSM =’jWfV X tie (3)

fiLsM=Vx Vxfl.. (4)

potentials also satisfy the wave equation

v21i +k21i = o (5)

wave number. The solution of (5), obtained
through separation of variables, yields a product of sine and cosine
functions in all three dimensions, with corresponding phase constants
in the three dimensions, kc, kv, and k,. For a cavity containing two
loading slabs lengthwise along 2, the structure is divided into three
sections: one corresponding to each of the dielectric loading slabs
and the one representing the central region. Approximate values of

the phase constants may be obtained using the transverse resonance
method [5]. Application of the boundary conditions at the perfectly
conducting walls and at the dielectric interfaces normal to ~ result in

an eigenvalue formulation, from which the resonant frequencies and
multiplicative field constants are determined [6], [7].

This method cannot be applied directly to the slab-loaded cavity

shown in Fig. 1 due to the presence of dielectric interfaces along not
one, but two dimensions. A modification to this method, however,
provides good approximations to the resonant frequencies and the
associated field distributions of the cavity. This modification utilizes

the concept of effective length to account for the two slabs oriented

along i (designated as 3 and 4 in Fig. 1). As an example, assume that
these two slabs have thickness t in the z dimension and a relative
permittivity c1. The effective length of the cavity in the 2. direction,
d’, is calculated as

d’ = (d – 2t) + 2tfi (6)

with d – 2t equal to the length of the portion of the cavity filled with
air in the 2 direction and 2t & equal to the effective electrical length
in 2 of the two dielectric slabs. This method provides more accurate
results for resonant frequencies and field distributions when the longer

cavity dimension (a or d) is designated as the 2 dimension, and its
effective length is calculated using (6). The field distributions for
resonant modes are obtained by calculating the i-directed component
assuming two loading slabs along ~, (designated as 1 and 2 in Fig.
1) and the 2-directed components by taking the effective length of
the slabs along i (designated as 3 and 4 in Fig. 1) into account.
More rigorous solutions for the field distributions may be obtained
using mode matching techniques, at the expense of more complex
computations.

In empty rectangular resonant cavities, the modes are commonly
classified by the type of mode (TE or TM) and the integers m, n, and
p which specify the variations of the fields in the three orthogonal

directions, e.g., TE101. The designation for the LSE and LSM modes
in the slab-loaded cavity may be described in a similar manner,
keeping in mind that the z variation index, m, cannot be strictly
interpreted for any information other than a general indication of the
approximate. number of half-sine variations within the entire cross
section of the cavity in z. Also note that in this case, the z index,
p, must also be interpreted with caution, since it is specified in the
context of the length extension, d’. Fig. 2 compares the cross-sectional
electric field uniformity achieved in the first resonant mode in the
dielectric slab-loaded cavity (LSE101 ) with that attained within empty
resonant cavity (TEIO~) of the same size. Note that a more UnifOrm

field distribution is attainable as the cavity’s resonant frequency
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Fig. 2. Normalized variation of electric fields (in dB) over a cross section
in z within an empty cavity (—) and a dielectric-slab-loaded cavity (- - -) at
their first resonant frequencies.

approaches the operational frequency of the related TEM waveguide,
which in this case is 915 MHz.

A microwave cavity operated around any of its resonant frequen-
cies behaves much like a discrete resonant circuit [8]. As with discrete
resonant circuits, the quality factor of such a resonarit cavity, Q,
serves as a measure of the sharpness of the system’s frequency
response. The Q of a resonant system is defined as [9]

Q$.o
peak energy stored u

average power lost = ‘0 m“
(7)

Estimation of a cavity’s Q also has implications for the time required
for convergence of numerical models [1].

The Q of the dielectric slab-loaded cavity at any of its resonant
frequencies is obtained by calculating the peak stored energy, U,

and average power lost, WL, at that particular frequency, taking
both the conduction loss within the cavity walls and the dielectric
loss in the loading slabs into account. Calculation of these quantities

requires knowledge of the field distributions of each resonant mode.

The derivation of the Q of the slab-loaded cavity of Fig. 1 presents
some complications since the resonant electromagnetic fields are
approximated through use of the effective length extension, d’.

Consequently, the propagation constant in the 2 direction, Jcz, is
taken to be pm /d’. However, the actual propagation constants in the 2.
direction are different within the central region and dielectric loading
slabs, typically with .kZ in the loading slabs being larger than k% in
the central region. Therefore, both the peak stored energy and average
power lost in the cavity may be underestimated using this model.

IV. MEASUREMENT

To test the validity of the length extension, d’, the field distributions

of several resonant modes in a cavity loaded with four dielectric slabs
were measured. The cavity was constructed of aluminum and the
loading slabs were made of titania obtained from Trans-Tech, Inc., of
Adamstown, MD (Dielectric Bulletin no. 65-70), with a thickness, t,
of 0.841 cm, height of 9.0 cm, and length of 12.0 cm. The relative
dielectric constant of these slabs is specified as 96.0 & 5% with a
dielectric loss tangent of less than 0.0001 at 6 GHz. For support, the
inner portion of the waveguide was filled with styrofoam, which has
a relative dielectric constant approximately equal to unity (typically
1.05–1. 10). The inner dimensions of the cavity were as follows:
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Fig. 3. Relative measured (- - -) and simulated (—) values of S21 (in dB),
representing vafues of j-dkected electric field for the LSEI oI resonant mode
of a slab-loaded resonant cavity. The area on the perimeter of the graph that
does not contain contour lines (0.0 cm < z <0.841 cm, 12.0 cm < z <
12.841 cm, 0.0 cm < z <0.841 cm, 12,0 cm < z < 12.841 cm) represents
the area occupied by the dielectric loading slabs.

TABLE I
SIMULATED AND MEASUREDRESONANTFREQUENCIESAND UNLOADEDQ

FORTHELSEIO 1 MODE OFTHE DIELECTRICSLAB-LOADEDCAVITY

Simulated Measured Percent Error

Resonant Frequency 866.o MHz 873.0 MHz 0.80
Unloaded 6? 2412.1 2028.9 18.89

a = d = 12.841 cm and b = 9.0 cm. The effective length of the

cavity in z, d’, is then equal to 27.639 cm according to (6).
The cavity was fed from a centered (z = z = a/2, y = O)

coaxial probe oriented parallel to the y axis of the system to excite
the odd order, symmetric LSE modes. Measurements were taken with
the, HP 8753A Network Analyzer. A measurement of return loss,
S11, determined the resonant frequencies of the cavity. The relative

magnitudes of the j-directed electric fields within the central portion

of the cavity were measured as insertion loss, Sz 1, using a small
coaxial probe (length = 0.95 cm, diameter = 0.30 cm) inserted into

holes in the side of the cavity opposite from the excitation probe at
y=b.

Several resonant modes were measured in the cavity. Measure-
ments and simulations for the first (symmetric) LSEIO 1 mode are
presented here. Table I shows the predicted and measured values
of resonant frequency for this mode. Additionally, a relative top-
ographical representation of the electric field measurements and
a corresponding topograph of the simulated electric field values

are included as Fig. 3, The simulated electric field distribution is

normalized to the maximum measured value of SZ1 to allow direct

comparison of the field contours.
A swept frequency measurement of the cavity’s unloaded Q

was taken using the HP 8753A Network Analyzer, following the
procedure outlined by Aitken [1O]. Table I includes the results of the
calculation and measurement of the cavity’s unloaded Q.

V. DISCUSSION

Comparison between measured and simulated resonant frequencies
and field distributions shows good agreement. The slightly higher

measured values of electric fields at the center of the cavity are

not present in the simulated values, probably due to the effect of

the coaxial feed that is not taken into account in the simulations.

One interesting aspect of these measurements and simulations is that
while the cavity of interest has, in theory, identical dimensions in

the i and 2 directions, the field patterns within the cavity for the
LSEIO ~ mode (both calculated and measured) are not identical in

these two directions, as evidenced by the elliptical shape of the

contours. The behavior of the calculations may be explained by the
fact that use of the effective length in z necessarily predicts slightly

different variations in z and z. The measurements, on the other hand,
indicate variations in z and z because the cavity dimensions of a

and d were not exactly equal. If a cavity with a and d strictly equal
were constructed, simulations would still indicate the same variations
as those shown in Fig. 3, while the measurements of such a cavity
would show completely identical variations in z and z.

Given the latitude of the approximations used in the calculation
of unloaded quality factor, the difference between the simulated and
measured values of unloaded Q presented in Table I is not as large
as one might reasonably expect. Aside from errors inherent in the
simulation model, differences between measured and simulated Q

may be due in part to variations in the relative permittivity and
loss tangent of the loading slabs. The unloaded Q of the slab-loaded
cavity is much lower than that expected for an empty cavity (typically
x 10000) for two reasons. First, loadlng of a resonant cavity with
dielectric material lowers its Q [9]. Second, insertion of lossy loading
slabs into an empty cavity results in increased dielectric losses, which
also reduce the cavity’s Q.

VI. CONCLUSION

This investigation demonstrates that a closed-form theoretical
analysis may be modified to extend to structures that would otherwise

be inappropriate for such an analysis. The approximations made
for the dielectric slab-loaded resonant cavity provide quite accurate
predictions of resonant frequency and electric field distributions, and
good estimates of unloaded cavity Q.

The field distributions of the lowest order mode within the central

portion of the slab-loaded cavity have a much smaller variation than
an analogous mode in an empty rectangular cavity as shown in Fig.
2. Additionally, the presence of the high-permittivity loading slabs

greatly reduces the bandwidth between resonant frequencies. These
two observations translate to an exposure chamber that can deliver
relatively uniform power to small samples in single-mode operation,

and be swept over a relatively small band of frequencies to enlarge
the available exposure volume.

While multimode cavities have been shown to have uniform power
distributions when empty, the introduction of any sample material
changes the boundary conditions within the cavity and consequently,
the field distributions of each of the resonant modes. Calculating
the effect of the sample on each particular mode to predict power
deposition may prove cumbersome. However, with fewer and more
spatially efficient modes present in the slab-loaded cavity, such

calculations will be straightforward and accurate. Work is currently
underway to predict power deposition achieved in the central regions
of slab-loaded cavities completely and partially filled with sample
material.
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Variational Solution of Microwave Circuits and Structures

S. Tsitsos, N. Karamitsos, B. M. Dillon, and A. A. P. Gibson

Abstract— A unified variational formulation for microwave planar
transmission lines and lumped-element impedances is developed and
applied to an isolated stripline power splitter. Scattering parameters are
calcrdated via the transfinite-element method and the numerical results
are corroborated by three-port experimental measurements. The mi-
crowave impedance of a thin-film isolation resistor is separately measured
and included in the model.

I. INTRODUCTION

Stripline power splitters with the appropriate power split ratio are

cascaded together to produce the desired operative aperture field

distribution in the corporate feeds of radar antenna systems [1].
Any distortion of the aperture excitation is minimized by using
isolation load resistors suspended between coupled striplines to

absorb reflected power [1 ]–[3]. This is one example of how highly

irregular electromagnetic structures are often combined with lumped

element components. Other examples range from varactor-tuned

oscillators to high-directivity, capacitor-loaded directional couplers.
A new method that uses the variational solution of electrical

circuits and fields is presented to cater for this class of problem.
The transfmite-element method of Csendes and Lee [4] is extended
to include lumped-element impedances and applied to an isolated
stripline power splitter. Measured impedance data for a thin-film
resistor is included in the model. Three-port scattering parameters
and field plots are presented for an equal split junction. Experimental
measurements are superimposed and compare well with the calcu-
lations. The amplitude of the TE1o higher-order mode at the port
reference planes has also been calculated.
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Fig, 1. Schematic of two planar waveguides with top and bottom electric
walls and magnetic sidewalls connected via a lumped element impedance Z,

II. VARIATIONAL FORMULATION

Variational principles for electromagnetic resonators and waveg-

uides were first introduced by Berk [5]. These expressions are often
used with finite-element methods to predict modal hierarchy and
scattering parameters in waveguides and junctions [4], [6]. Stationary

energy methods can also be applied to electrical lumped-element
networks [7]. Recently, a formal procedure describing the variational
solution of linear and nonlinear circuits has been enunciated [8].
These methods are extended here to include interconnection with
distributed planar transmission lines. The geometry in Fig. 1 depicts
two planar waveguides connected via a lumped-element impedance
Z. The power dissipated in this impedance is a function of the nodal
terminal voltages lrEz( 1) and hEZ (z) and is written as

(1)

Following Csendes and Lee the variational functional for the planar
waveguide sections is given by

(2)

The area integral refers to the layout of a planar geometry and repre-

sents the stored electromagnetic energy. The line integral represents
the power flow onto each port p. The permittivity, permeability, and
angular signal frequent y are denoted c, p, and w, respectively. For
planar waveguides interconnected or terminated by Q-lumped element
impedances, (1) and (2) are combined as [9]

(3)

where each impedance ZY is connected between nodes i and k of a

finite-element mesh.

111, STRIPLINEFORMULATION

The transfinite-element method described by [4] uses a planar
waveguide transformation to model microstrip-like transmission lines.
An efficient two-dimensional analysis of three-dimensional microstrip
discontinuities and junctions then follows. Triplate stripline can be
transformed into two parallel plate waveguides one on top of the
other. Each waveguide has top and bottom electric walls and magnetic
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